
Solutions UZI 09.04.2022

A: Lawnmower

The high-level idea is that we want to build a list of events, corresponding to both unit
squares and lawnmowers available at the shop, and then sweep them, computing the
answers for the lawnmowers in the order we encounter them.

What events we should consider? For a lawnmower with blade height b, we can create
an event for it with priority b. For a unit square containing grass of height g, there are
two values of interest: ⌈g

2
⌉, which is when the square becomes active, i.e. can be entered

at all, and g, when it becomes uninteresting, meaning that it no longer contributes to the
total amount of grass we mow.

This gives us 2nm+s events, which we consider in the order of increasing priority. On
the side, we want to maintain a division of the active squares into connected components
(but need to consider an extra vertex corresponding to the outside of the lawn); moreover,
for each component, we want to store the sum of grass heights of all the interesting squares
belonging to it, as well as the number of such interesting squares. This can be done with
a standard Disjoint Set Union datastructure, enriched with two extra statistics for each
component. When a square becomes active, we possibly join some components; when it
becomes uninteresting, we update the values stored in its component. Finally, whenever
we reach an event corresponding to the lawnmower, we read-off the sum s and count c for
the component containing the auxiliary vertex corresponding to the outside, and compute
the answer as s− c · lk, where lk is the blade height of the lawnmower in question.

The time complexity is dominated by sorting the events, and turns out to be O((nm+
s) log(nm+ s)).

B: Bajtastic

It’s easy to see that bajtastic words are exactly those starting with either ajt, bajt, jt or t.
These sets are disjoint; if we denote the size of the alphabet by |A| = 26, then these sets
of words have sizes |A|n−3, |A|n−4, |A|n−2 and |A|n−1, respectively (but if n < 4, some of
them might be empty).

If we precompute the powers of |A| (remembering that some of them are larger than
1018, in which case we don’t care about their exact value), then given k we can easily
check which prefix we should use. We then decrease k appropriately, to account for the
words we "jumped over", and generate the remaining letters of the word right-to-left (by
looking at k mod |A| to determine the last letter, dividing k by |A|, and continuing).

The solution can be implemented in O(n), which is more than enough to get Ac-
cepted.

C: We hate rectangles

If there are two points in any column c, say A[i][c] and A[j][c], then for any other c′

the points A[i][c′] and A[j][c′] cannot appear together, as they would form a rectangle.
Therefore, for every pair of rows (i, j) there is at most one column which contains both
points of this pair. There are at most

(
k
2

)
pairs in total, and if a column contains p ≥ 2



points, then it uses up
(
p
2

)
pairs. As

(
p
2

)
≥ p/2 for p ≥ 2, there can be no more than 2

(
k
2

)
points in columns with ≥ 2 points. The maximum number of points is then 2022−k+

(
k
2

)
,

and we can achieve it by placing a different pair of points in each of the first
(
k
2

)
columns,

and one point in all remaining ones.

D: Minimal Lexicographic Subsequences

Let S[1..n] be the input string, and assume that we are adding letters one by one. Let Dk

denote the (current) k-MLS, and Dk[i] be the i-th letter of Dk for i = 1, 2, . . . , k. We will
keep all Dk computed throughout the algorithm, so that after each letter answering all
the questions is easy. But how to keep all Dk updated after adding the next letter? Let
Dk denote the “old” k-MLS (before the j-th letter), and D′

k the new one. We claim that
D′

k[1..k − 1] = Dk−1. Indeed, D′
k[1..k − 1] cannot contain S[j]. If D′

k[1..k − 1] > Dk−1,
then Dk−1 ·S[j] would be better than D′

k. There cannot be D′
k[1..k− 1] < Dk−1, as Dk−1

is minimal in S[1..j − 1]. Then D′
k[1..k − 1] = Dk−1 and we already know all but one

letter of D′
k. The last letter of D′

k can be chosen greedily as the smallest letter between
the next-to-last (D′

k[k − 1]) and the end of S.
To sum up, in every step we compute D′

k by simply taking Dk−1 and adding one
character, a minimal one on some suffix interval of S. We achieve it by keeping all Dk on
a vector or deque, and each added letter is computed with a single query to an interval
tree in O(log n). Alternatively, we can preprocess all such suffix queries in O(n) time
every time a letter is added to S. The total complexity is either O(n2 log n) or O(n2).
Also, the memory complexity is O(n2) (and we have no idea how to bring it down).

E: We love rectangles

The solution of this problem can be split into two parts: transforming the problem into its
equivalent graph form, and then applying some known algorithms on this graph. So what
graph should we consider? Take a graph G in which the vertices represent rectangles, and
an edge u− v exists if the two rectangles u and v have non-empty intersection. We claim
that the answer to the problem is YES if and only if the graph G contains an induced
cycle of length at least four.

The proof is somewhat tedious; but we can give an intuitive reason why this claim is
true. So suppose we chose a set S of rectangles that splits the plane into at least two
parts. Then there exists some point P in the plane which is "surrounded" by rectangles
(formally, it belongs to a bounded connected component). We then see, that we can
in fact restrict S to some cycle C which "wraps" around point P . Then, by an usual
algorithm for finding induced cycles, for any diagonal edge in C we split it into two cycles
and pick the one which still "wraps" around P . Eventually we restrict S to just some
induced cycle. We finish the argument in one of two ways. We can just notice that such
situation cannot occur using only 3 rectangles - so at least 4 are needed. But to give it
more rigour, we can notice that the vertical and horizontal lines passing through P must
intersect 4 different rectangles from set S. Hence the cycle has length at least 4. The
proof in the other direction is even more tedious (and provides little to no intuition), so
we will omit it completely.

Hence the algorithm firstly constructs a graph G and then checks if there exists an
induced cycle of length ≥ 4 in it. But how do we do that?



This is where we introduce new terminology. First, a graph G is called chordal if it
does not contain an induced cycle of length at least 4. Next, given some graph G and an
ordering v1, v2, ..., vn of its vertices, we say that the ordering is perfect, if for any vertex
vk the set of its left neighbours (that is, neighbours vj with j < k) forms a clique. Lastly,
we introduce the Lexicographic BFS Algorithm. Here is how it works: at each step,
pick any unvisited vertex v which has lexicographically the smallest set of visited
neighbours – and then visit it, putting it on the end of the resulting order. We repeat
this step until all the vertices have been visited (just as a side note - in Lexicographic
BFS given two sets of vertices A ⊂ B with A ̸= B, the bigger set B is considered smaller
in lexicographic order). Using proper optimizations, we can run Lexicographic BFS in
time O(N2).

But how are these concepts related? Here is how: it turns out that a graph G is
chordal if and only if there exists a perfect ordering of its vertices. Furthermore, to check
if such an ordering exists, we can find it by running a Lexicographic BFS. So to solve
our problem we take the graph G constructed on rectangles, and run Lexicographic BFS
on it. If the produced ordering is perfect (we can check it in O(N2)), then the graph is
chordal and the answer to our original problem is NO. Otherwise, if the ordering is not
perfect, the graph is not chordal, and using an additional algorithm we are able to find
an induced cycle of length ≥ 4. Such cycle forms a set of rectangles, which splits the
plane in exactly 2 connected components.

F: Departures

Let’s start with a slightly modified problem. Suppose that there are no trains running
between weeks. We identify each train as an interval, whose endpoints are the departure
and arrival times. Two trains may belong to the same group if and only if the corre-
sponding intervals do not nest, i.e. one of them does not start before and ends after the
other. Let’s sort all the intervals (first by the beginnings and then by the ends). Let’s
create a list of empty groups to which we will assign intervals, so that each group does
not contain a nested pair of intervals. For each group, we maintain the farthest end that
is reached by any of the intervals in that group. We go through the sorted list of intervals
one by one and append an interval into the first group (we use binary search to find such
a group), which farthest end is at most as far as the end of the considered interval. Note
that with such assignment, no two intervals in a group can nest. Also note that we can
use binary search, because we always add intervals to the first matching group, which
means that the ends of the groups form a descending sequence. It can be proved that
this group assignment uses the minimal number of groups. We will omit this proof for
now and return to it at the end.

Now let’s return to the original problem. If the train is running between weeks, then
let’s consider it twice, as if it was running at the beginning and at the end of the week.
Now we could use the same approach as before. However, there might be a problem. We
need to prove that every interval which was copied will be assigned to the same group.

Let’s observe that in the algorithm we’ll start by assigning all copied intervals into
groups (they start before the actual week). Then we’ll move on to the next intervals until
we finally start hitting second copies of the intervals. Note that they are long (sticking
out beyond a week). Let’s consider what influences the assignment of such an interval. It
only depends on the intervals which ends reach farther. However, only other, previously



occurring, copied intervals can affect the assignment, which means that the same intervals
as at the beginning have an impact on the location of a given interval, i.e. we will assign
them to the same group as at the beginning.

Let’s return to the previous statement and prove it. We want to show that presented
algorithm indeed uses minimal number of groups. Let’s call the process of adding intervals
with the same starting endpoint a phase. Suppose we’ve just added a first interval to a
k-th group. We’ve done it because the k − 1-th group had an interval that was added
in one of the previous phases and reaches farther. And that interval was added because
of some other interval in the k − 2-th group and so on. This means that there are k
intervals which are pairwise nested. Because of that there cannot exist an assignment
into less than k groups. This proves that the presented algorithm uses minimal number
of groups.

G: Crystal skulls

The solution is based on the idea of splitting the whole map into regions, and then
solving the problem in each region independently. Furthermore, as we will see, each of
these regions will in fact be a rectangular strip of width equal to 1 or 2, and maximal
height. Lastly, we will traverse these rectangles in a sequential order, always starting in
one corner and ending on the opposite.

To put our ideas into practice, we will firstly have to determine the exact partition
of map into rectangles. So assume the map has dimensions NxM . Depending on the
(surprisingly crucial) value of m mod 4, we will split the map into the following strips:

m ≡ 0 Two rectangles of width 1 on both sides of map, and the rest of space is filled with
rectangles of width 2.

m ≡ 1 One rectangle of width 1 and the rest of space is filled with rectangles of width 2.

m ≡ 2 Just the rectangles of width 2.

m ≡ 3 In this case, we in fact cut the right-most rectangle of width 1 out of the map,
bringing it down to case m ≡ 2 mod 4

This way we always split the map into an odd amount of rectangles, thus ensuring that
we start at position (1, 1) and end on position (n,m).

Now we just have to figure out how to traverse each of these rectangles. So we note
that in our construction we ensured, that each rectangle of width 1 will always be entirely
filled with hallways. That’s why we will only be concerned with the case of width 2. Here,
we only move in one vertical direction, changing the column to collect a treasure/omit a
trap whenever necessary. Since all the treasures/traps are sufficiently far away from each
other, we are guaranteed to never step on the same field twice.


