
Solutions UZI 15.01.2022

A: Gold rush

Let ri, cj and dj−i+n be the estimated depths of gold deposits for row, column and diagonal
of sector (i, j). To solve the problem we would like to know the value

R =
n∑

i=1

m∑
j=1

[max(ri, cj, dj−i+n)− min(ri, cj, dj−i+n)] .

To achieve this we will calculate two expressions

S =
n∑

i=1

m∑
j=1

[ri + cj + dj−i+n]

and

T =
n∑

i=1

m∑
j=1

[2 · min(ri, cj, dj−i+n) + mid(ri, cj, dj−i+n)] ,

where mid returns median of given values. Note that R = S − T .
To obtain S we can iterate over all estimations and multiply them by the number of

sectors they apply to. So we would multiply row estimations by m, column estimations
by n and diagonal estimations by an appropriate value between 1 and min(n,m).

Note that

T =
n∑

i=1

m∑
j=1

[min(ri, cj) + min(ri, dj−i+n) + min(cj, dj−i+n)] .

To obtain T we can solve the following problem. Given only two types of estimations
calculate sum of minimums over every sector.

Let’s resolve this subproblem given estimations for rows and diagonals. Other pairs
are solved similarly. We use two segment trees. One for rows and one for diagonals. Each
segment tree will store the information on how many sectors in a given row (diagonal)
was not assigned a smaller diagonal (row) estimation, e.g. segment tree for rows will start
with value m in every leaf. We iterate over all the estimations for rows and diagonals in
an ascending order. Let ri be an row estimation under consideration. We query segment
tree for rows (i-th position) to find the number of sectors that were not assigned a value
yet. Let x be the result of the query. We add ri ·x to the result of the subproblem. Before
moving to the next estimation we have to update the segment tree for diagonals. We
add −1 to all the diagonals that have a common sector with considered row. We follow
a similar procedure when considering diagonal estimations.

Solving this subproblem for every pair of estimation types gives as T . So in the end
we can return R as the result.

Time complexity: O((n+m) log (n+m)).



B: Krzysztof and UZI

One can notice that if n is a leap year, n + 400 is also a leap year. The opposite is also
true, i.e., if n is not a leap year then n+400 is also not a leap year. Since the structure of
leap years repeats every 400 years, and the structure of UZI competitions repeats every
k years, we can see that the structure of "UZI and leap years" repeats every 400k years.
Because of this, it is enough to brutally check the first 400k years, because the later ones
have exactly the same gaps between consecutive competitions.

C: Henry Porter and the Hedge of Secrets

First, notice how a spell of power k increases exactly k hedge heights by at least a factor
of 2. Hence, the sum of powers of all spells we can ever perform without some of the
height exceeding C = 1018 is O(n logC). This means that if we’re able to detect a spell
which (without loss of generality) has to be performed in any optimal solution, we can
just naively iterate through the affected hedge segments and apply the spell; as long as we
break if some height exceeds C, the total time spent on applying spells will be acceptable.

It seems that some kinds of spells "interfere" with each other, but we can make a
simple observation to resolve that: if we ever want to perform a spell of power a · b (for
some a, b > 1), we can instead perform b2 smaller spells of power a (or, equivalently,
a spells of power b and then b spells of power a). Since we don’t care about the exact
number of spells, this means we can assume we only ever perform spells of power k if
k is a prime number. Now, the problem simplifies significantly, as each prime number
that divides some of the ai’s could be treated independently. One approach is thus to
try to factorize everything, and go from there, and the problem can indeed be solved in
this way; however, here we’ll focus on the shortest solution, which doesn’t "separate" the
different primes up front.

Let’s choose an index i, and define b = ai
gcd(ai,ai+1)

. Note that b contains all the prime
divisors that appear in ai more than they do in ai+1, and the only spell that affects ai+1

without affecting ai is one that starts at position i + 1. Thus, we can simply iterate
through all prime divisors of b, and for each divisor p apply a spell of power p starting at
position i + 1 (if a divisor appears in a power larger than one, then we’ll just apply the
spell several times). We can now go through all i’s from left to right and perform this
operation, and then again from right to left (simply done by reversing the sequence and
re-running the same procedure); we can see that either something will break (a hedge
segment height will exceed C, or we will try to apply a spell that "doesn’t fit") or all ai’s
will end up having the same value, at which point that value is our answer.

The only question is, how efficient is the above approach? First of all, we need to
factorize values of the form b = ai

gcd(ai,ai+1)
. We can do this naively by iterating through

all potential divisors, as long as we break if we get to n (if we haven’t fully factorized
b at this point, that means we would need to perform some spells of power larger than
n, which is never going to be possible). If we do end up breaking after reaching n, then
the answer is NO, so this case can only happen once per test case. Otherwise, our naive
factorization loop will go up to the largest prime divisor of b, which may be relatively
large. However, note that after we loop for p iterations to find p | d, we also apply a spell
of power p, and (as said at the beginning of this editorial), the total work spent applying
spells is bounded. Thus, this naive factorization is actually enough! (As a side note, it is



possible to factorize all ai’s up front by computing their LCM, which has to be no larger
than C for the answer to exist, factorizing that using an algorithm such as Rho-Pollard,
and then using the obtained set of prime numbers to factorize ai’s. But all this is just
not necessary.)

Summing up, we get an algorithm with running time O(n logC), which ends up being
remarkably simple to implement (with the core solution taking up less than 25 lines of
code).

D: Average problem

Let pref(i) return the prefix of s of length i. We start by determining the length of the
maximal pufix for every prefix of s (result stored in pufix[i]). We build a directed tree
by adding an edge (pufix[i] → i) for every prefix (i ∈ [1, |s|]).

Note that iterating internal vertices of the path from root to the vertex i iterates all
lengths of pufixes for the i-th prefix.

1◦. There is an internal vertex which value is not the length of pufix of the i-th prefix.
That cannot be true since pufix of a pufix is a pufix.

2◦. There is a pufix p of i-th prefix which length is not covered by the internal vertices.
Suppose its length is between two vertices u and v connected by an edge (u < v). Then p
has to be a pufix of pref(v). But pref(u) was the longest pufix of pref(v), thus leading
to a contradiction.

To get the result for every vertex v we want to know the value of the vertex that is in
the middle of the path from root to v. To do so we run DFS maintaining all the vertices
on the path from root to the current position.

Time complexity: O(|s|).

E: The Defense of Aiur

There are two ways that two optimal Templar may meet:

1. Both Templar go straight towards each other.

2. Each Templar goes towards the Pylon closest to them. The one that reaches their
respective Pylon first teleports to the second Pylon. After teleporting, the Templar
move towards each other.

First, let’s solve the easier case, where the Templar don’t use Pylons. Here, the an-
swer is the distance between the closest pair of Templar (the distance should be divided
by two, but without loss of generality we will skip this division during the rest of the
solution). We can compute the distance between the closest pair of points using either
the classic divide-and-conquer algorithm, or a modified sweep-line, both of which work
in O(n log n) where n is the number of points. From now on, let’s assume that the two
closest Templar are d units away from each other.

In the second case, if we compute the closest Pylon for each Templar, we just need
to add the two smallest of these Templar-Pylon distances to get the answer. This is a
well known problem which we can solve using either kd-trees or a modified Delaunay



Triangulation. Both of these approaches work in O(n log n) but are hard to implement
well within the time of the competition.

To simplify our solution, we may notice that, for a given Templar, there is no need
to consider Pylons farther than d units away, because they for sure won’t let us improve
upon the bound of d. This means that it is sufficient, for a single Templar, to only check
Pylons within a square of side length 2d centered on the Templar. It turns out that if we
do this, a single Pylon will be checked by a constant number of Templar (proof below).
This can be implemented with a sweep-line in O(n log n+m logm) time (m denotes the
number of Pylons).

Now, let’s prove why each Pylon will be checked a constant number of times. Without
loss of generality, let’s assume that, for a given Templar, we will check for Pylons in a circle
of radius

√
2d around it, instead of a square of side length 2d (the square is completely

within the circle, so in the worst case we will over count).
Let’s fix a Pylon P . Now, let’s draw two circles of radii

√
2d and, (

√
2 + 1

2
)d respec-

tively, that are centered on P . For a Templar to check P it must be inside the smaller
circle. For each Templar inside the aforementioned circle, let’s draw a circle of radius d

2
around it. Since there are no Templar closer than d to each other, it follows that the
circles of radii d

2
don’t intersect. These circles are completely inside the circle of radius

(
√
2+ 1

2
)d. Since the circle of radius (

√
2+ 1

2
)d has an area of (

√
2+ 9

4
)πd2, and each circle

of radius d has an area of 1
4
πd2 we can see that there can be at most ⌊ (

√
2+ 9

4
)πd2

1
4
πd2

⌋ = 14

smaller circles within the circle of radius (
√
2+ 1

2
)d. This in turn implies that at most 14

Templar can check the Pylon P , concluding the proof.

F: Numbers

One obvious way in which n | rev(n) may hold is n = rev(n), i.e. that n is a palindromic
number. It may be tempting to assume there are very few non-palindromic solutions, or
even that 2178 is the only one, but that’s not true: some of the first non-palindromic
numbers of interest are 1089, 2178, 10989, 21978, 109989, 219978, 1099989, 2199978. While
there is certainly some structure to them (notice how the 9 digits start to appear in the
middle?), some other "kinds" of solutions emerge for larger numbers of digits, e.g. note
how 2178 being a solution implies 217821782178 is also one. Thus, let’s leave this and
try a more general approach.

Denote x = rev(n)
n

, and notice that x ∈ {1, 2, . . . , 9}. We will fix the value of x and
the number of digits d, and generate all d-digit numbers n such that rev(n)

n
equals x. Note

that checking d up to 14 is enough to find 107 solutions, as there are ≈ 10d/2 palindromic
numbers with d digits.

Given x and d, we can start to try all possible options for the digits of n, starting
from the least significant one. Once we fix the last digit of d, we can multiply it by x,
and get the last digit of x ·n, together with the carry to the second-to-last position. Note
how the last digit of x · n = rev(n) has to be the first digit of n, so we can fill that in.
Continuing in this manner, we will check all ways of choosing the bottom half of digits
of n, and at that point the top half will already be determined, so what is left is to check
that everything is correct there. This process takes time roughly O(10d/2) for a fixed x
and d, and is fast enough in practice (especially if we break early after some things go



wrong, e.g. if we get that the first digit of n has to be 0).
Using the approach above we generate the first 107 numbers of interest, and after

sorting them can answer any queries about the k-th smallest one in O(1) time.

G: Hostile takeover

Let u be the company with maximal daily cost cu. We claim that there exists an optimal
solution in which u is bought right after its parent company. This is true because if u
were not bought right after its parent, we can swap it with a previously bought company
and achieve a solution with at most the same cost (we save cu by buying u day earlier,
lose some other cj, but cj ≤ cu).

Now that we know that u is directly after its parent p, we can ”join” both of the
companies into one big node u′ in the tree with cu′ = cp + cu. (Now there is a 1-day gap,
but this will not change the further argument). We can now repeat this reasoning, pick
the current company v which now has the maximal cv and join it with its parent. If we
repeat this process n − 1 times, we will have constructed the optimal solution. We can
simulate picking a new node with a priority queue, and join nodes together with disjoint
set union in O(n log n).

H: Hero skills

Let us draw the skills as a diagram, where the number of x in row k denotes the number
of skills of level k:
x
xx
xxx
xxxx
xxxx
xxxxx
xxxxxx

We will call a diagram reachable if it can be obtained following the Fate rules – our
goal is to check if a given diagram is reachable. The solution bases on the following fact:
A diagram is reachable if and only if for every x-cell in it, the diagonal below this cell is
full. For example, the presence of the red cell below requires all blue part of the diagonal
below to appear:
x
xx
xxx
xxxx
xxxx
xxxxx
xxxxxx

First, observe that any skill development must preserve this condition. This is because
when a skill is raised, its x moves exactly one row up, but also at least one column to the



left – if not, the target row would end up being longer. Then it either moves to the same
diagonal, or to a lower one – neither can violate the diagonal condition.

It remains to prove that any such diagram can indeed be constructed. We split the
diagram into diagonals and fill them one-by-one, starting with the lowest one. On every
diagonal, we move the x’s to their places, starting from the highest ones. Every time we
want to push an x up, we have a guarantee that the diagonal below is full, so the move
is always possible.

Finally, the reachability condition is possible to check in O(n) – we iterate through
rows and keep the number of the lowest diagonal which has had an empty space. No x
may appear above it.


