
Solutions UZI 18.01.2020

A: Sum of palindromes

Let A be the input number, and let it have n digits (which means that A ≤ 10n).
Suppose that n ≥ 3. We can express A as AHAL – concatenation of two numbers,
where len(AH) = dn/2e and len(AL) = bn/2c. We substract 1 from AH , obtaining
A′H = AH − 1 and then append len(AL) digits to A′H such that the result is a palindrome
B. Now A− B ≤ 10n/2+1, so we keep B as one of the desired palindromes, reducing the
length of A by a factor of 2. In log2 n + 1 ∼ 18 iterations we reach a 2 digit number,
which we deal with as a special case.

B: Bookface

We are given a sequence of non-negative integers xi and a number d. In one move we can
change any xi by ±1. We want to change the sequence so that |xi − xj| ≥ d holds for
any i 6= j using the smallest number of moves.

First, let’s sort the sequence xi; from now on we assume x1 ≤ x2 ≤ · · · ≤ xn. We can
imagine that the xi values are points on a line, which we want to move so that no two
are closer than d. Note that for any i, the i-th point is to the left of the (i+ 1)-th point,
and it is suboptimal for them to "swap", so we can assume the relative order of points
will not change, and only enforce the condition that xi+1 − xi ≥ d must hold for any i.

Since xi’s must remain non-negative, we cannot shift our points below 0. It is conve-
nient to remove this condition - for example, by adding the values {−d,−2d,−3d, · · · ,−(n+
1)d} to the input sequence xi. Then, it will never be optimal to move any of the original
values to negative, and we can forget the xi ≥ 0 condition from now on.

Now let’s define x′i = xi−i·d; note that x′i may no longer be a non-decreasing sequence.
Moving xi by ±1 corresponds to moving x′i by ±1. Moreover, xi+1− xi ≥ d translates to
x′i+1 ≥ x′i. While the reduction from this paragraph is not strictly necessary, it allows us
to forget the value of d from now on.

To solve the final problem, consider the dynamic programming f [i][t], defined as the
minimum total cost to make our sequence non-decreasing if we consider only the first i
elements, and the value of the last element has to be t. If we define g[i][t] = mint′≤t f [i][t

′],
then f [i][t] = |t− xi|+ g[i− 1][t].

Of course we cannot maintain f [i][t] explicitly, as the range for possible values of t
would be prohibitively large. However, we can prove by induction that any f [i] is a
bitonic piecewise linear function with respect to t.

Transforming f [i] to g[i] corresponds to removing everything after the minimum value
of f [i] and replacing that with a constant segment. The last linear piece in the function
g[i] will have slope 0, so the last piece in the function f [i] will have slope 1.

In order to obtain the optimum solution we don’t need to store the values of f [i], only
the shape. Then, having restored the optimal sequence x′i we can compute the cost. We
see we only need to store the "breakpoints" of f ; i.e. the points where the slope increases
by 1. These points can be stored in a multiset.

Finally, the code turns out to be strikingly simple! We process element of the sequence
x′i from left to right. We maintain the multiset of breakpoints S, which corresponds to
the current function g. To process an element x, we need to insert x into S twice (since

1

in the point x the slope will change by 2). Now, S represents the new f . To transform it
into g, we need to remove the rightmost breakpoint.

The rightmost breakpoint in g at a given moment is the optimum (smallest value of
the cost) for a given prefix. If we save these breakpoints in a sequence pi, then it’s easy
to use pi to compute the optimal solution (hint: go from right to left through pi and
greedily fix it so that it’s non-decreasing).

C: Space Gophers

Let’s consider two tunnels as connected if one can travel directly from one to the other
(in other words, if there exists a microcube in one tunnel and another microcube in the
other, such that these microcubes touch or coincide). This gives a graph G with tunnels
as vertices. In order to see if we can travel between two microcubes c1 and c2, we can take
any tunnel t1 that contains c1, and t2 that contains c2, and ask if tunnels t1 and t2 are
connected in G. Therefore, to solve the problem it is enough to compute the connected
components of G.

Unfortunately, there can be O(n2) edges in G, so we cannot store G directly. However,
we can maintain a disjoint-set-union structure on tunnels, and join only some pairs of
tunnels that will span the same set of connected components as the full set of edges in
G.

Let’s consider which pairs of tunnels are connected in G. There are two cases: either
the connected tunnels are parallel or perpendicular. The first case is easy, since for any
tunnel there are just four possible candidate tunnels. Let’s now focus on the second case.

Assume that we want to consider connected pairs of tunnels a and b, where a is parallel
to the x-axis, and b to the y-axis. If we have a function to perform this, we can then call
it for the two other pairs of directions.

Denote the z coordinate of a and b as za and zb respectively. Notice that, since a
and b are perpendicular, they will be connected if and only if |za − zb| ≤ 1, the other
coordinates of the tunnels don’t matter.

Let’s now group all tunnels parallel to the x-axis by their z coordinate into groups
X[z]. Similarly, group all tunnels parallel to the y-axis into groups Y [z].

Consider a group X[z]. We would like to join all tunnels in that group with all tunnels
in groups Y [z−1], Y [z] and Y [z+1]. If these three groups are empty, then there is nothing
to be done. Otherwise, we can join all these tunnels into one component. After that, we
can reduce groups X[z], Y [z − 1], Y [z] and Y [z + 1] into just one tunnel each, since all
tunnels in each of these groups are in the same component. By doing so we will join two
tunnels only O(n) times.

The complexity is O(n log n), since we need to group the tunnels by coordinates.

D: We apologize for any inconvenience

We create a graph with a vertex for each stop and a vertex for each line, and an edge iff a
given line serves a given stop. It is easy to see that travelling between two stops requires
c changes iff their respective vertices are at distance 2(c+ 1).

We renumber the vertices: first go the "stop" vertices. Then go the "line" vertices for
lines which never get suspended. Last go the "line" vertices for the suspended lines, in
the reversed order of their disappearing. We run Floyd-Warshall on this graph.

2

By the basic properties of Floyd-Warshall, the value FloydWarshall[i][j] denotes,
after the t-th iteration of the algorithm, the length of the shortest path from i to j which
uses only the set {1, . . . , t} as its possible intermediate vertices. Which is precisely what
we want, because (in the last s iterations) vertices {t+1, . . . , n+k} are the vertices related
to lines which are suspended in this iteration. To obtain the result for the iteration, we
simply take a maximum – except for infinity value – over the distances between "stop"
vertices (note there exist instances where this is not the same as just taking the graph’s
diameter, i.e. there might be a "line"–"line" pair at a distance strictly larger than the
maximum over the "stop"–"stop" pairs).

Complexity: O((n+ k)3).

Remark One might easily observe that the first n iterations of Floyd-Warshall (those
when "stop" vertices are added) actually only compute paths of length 2. So, there’s
really no need to perform them as it is possible to compute the same result with just one
pass over the graph (plus a logarithmic factor for sorting each line’s stops), which changes
the complexity from O((n+ k)3) to O((n+ k)2 · k). This, however, was not necessary to
fit within the time limit.

E: Vladiksoft

Let’s denote the probability that Intern Vladik generates a path s by p[s]. In order to
separate a half of the paths that are most likely the product of Intern Vladik’s code,
it is natural to sort all paths by the probability p, and assign the half with the highest
probability to the intern. In fact, it’s not hard to prove that this is the optimal solution
- i.e. it gets the best possible fraction of correct answers (in expectation) for any board.

How to compute p[s]? It’s somewhat annoying that in some cases the Intern Vladik’s
algorithm restarts itself, so let’s ignore that possibility for a moment, and assume that if
the algorithm gets stuck it doesn’t return any path. Denote the probability of generating
s by this altered algorithm by p′[s]. Now, it’s easy to see that p′[s] =

(
1
2

)k[s], where k[s] is
the number of places where we can "step off" the path s, i.e. the number of positions on
the path where Intern Vladik’s code samples the direction. The value k[s] can be simply
computed by iterating through s.

How does p′[s] relate to p[s]? Let’s denote the probability that Intern Vladik’s algo-
rithm will get stuck if starting from the upper-left corner as q. The sum of p′[s] will be
exactly 1− q, while with probability q the algorithm will restart (by the way, restarting
the sampling algorithm if it fails to obtain a sample is called rejection sampling, and this
approach has various interesting applications). The probability mass of q will then be
distributed in the same way as if the algorithm was just sampling for the first time. This
means that p[s] = α · p′[s], where α is a constant that depends only on q. In other words,
to obtain p[s] from p′[s] we just need to rescale these values to sum up to 1.

In the end, it’s possible to solve the problem by computing p[s]. However, since α is a
constant, sort by p[s] is equivalent to sorting by p′[s], which in turn is equivalent to sorting
(decreasingly) by k. Therefore, we don’t even need to think in terms of probabilities and
use floating point values, it’s enough to solve by k.

Remark For m = 100 000 paths, the accuracy obtained by a given algorithm for a fixed
board is very stable (usually varies by at most ±0.5%). For some boards in the test cases

3

the optimal accuracy is around 76%. Therefore, a suboptimal algorithm is likely to get
Wrong Answer.

F: Wizards Unite

Let t :=
∑n

i=1 ti. Let’s say that we use silver keys at moment 0 to open first k chests
with opening times t1, . . . , tk. Then the total time to open all the chests equals to
max{t1, t2, . . . , tk, t−(t1+ t2 . . .+ tk)}. On the other hand, it’s obvious that the minimum
possible total time to open all the chests cannot be less than max{t1, . . . , tn}. So it’s easy
to see that to minimize the total time we should use silver keys to open k chests with the
highest opening times and use the gold key to open other chests.
Complexity: O(n log n).

G: Binomial

Theorem 0.1 (Lucas) For non-negative integers m and n and a prime p, the following
congruence relation holds: (

n

k

)
≡

m∏
i=0

(
ni

ki

)
where:

n = n0 · p0 + n1 · p1 + . . . nm · pm

and
k = k0 · p0 + k1 · p1 + . . . km · pm

are the base p expansions of m and n respectively.

Using this theorem it’s easy to see that
(
n
k

)
is odd iff n is a supermask of k.

Let’s assume that max{a1, . . . , an} < 2w for some w. For each ai we want to find the
number of its submasks in the sequence. It’s easy to do in O(3w), but it’s still too slow.
The model solution uses the following idea: let’s compute f(i,mask) - the number of
such elements in the sequence which are submasks of mask on i first bits and are exactly
mask on the rest bits. Then this function can be computed in O(2w · w).

Complexity: O(MAX logMAX).

Remark It is also possible to solve this problem without the use of Lucas theorem.
It’s easy to see that for a non-negative integer n and a prime p, the maximum power

of p that divides n! equals ∑
i

⌊
n

pi

⌋
Therefore, the maximum power of 2 that divides

(
n
k

)
equals∑

i

(⌊ n
2i

⌋
−
⌊
k

2i

⌋
−
⌊
n− k
2i

⌋)
Every term in the above sum is non-negative, so the entire sum is 0 if and only if

every term is 0. It’s easy to see that this means k and n− k have no bits in common in
their binary representations; which is the same as n being a supermask of k.

4

